BLOW-UP FOR A NON-NEWTON POLYTROPIC FILTRATION SYSTEM WITH NONLINEAR NONLOCAL SOURCE
نویسندگان
چکیده
منابع مشابه
Blow-up for a non-Newtonian Polytropic Filtration Equation with Multiple Nonlinearities
This paper deals with the global existence and blow-up of a non-Newtonian polytropic filtration equation with multiple nonlinearities. We obtain necessary and sufficient conditions on the global existence of all positive solutions by constructing super solutions and sub solutions. AMS Subject Classifications: 35K50, 35K55, 35K65.
متن کاملBlow up problems for a degenerate parabolic equation with nonlocal source and nonlocal nonlinear boundary condition
* Correspondence: zhgs917@163. com Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang 212013, China Full list of author information is available at the end of the article Abstract This article deals with the blow-up problems of the positive solutions to a nonlinear parabolic equation with nonlocal source and nonlocal boundary condition. The blow-up and globa...
متن کاملGlobal Solutions and Blow-up Profiles for a Nonlinear Degenerate Parabolic Equation with Nonlocal Source
This paper deals with a degenerate parabolic equation vt = ∆v + av1 ∥v∥1 α1 subject to homogeneous Dirichlet condition. The local existence of a nonnegative weak solution is given. The blow-up and global existence conditions of nonnegative solutions are obtained. Moreover, we establish the precise blow-up rate estimates for all the blow-up solutions.
متن کاملBlow-up for Degenerate Parabolic Equations with Nonlocal Source
This paper deals with the blow-up properties of the solution to the degenerate nonlinear reaction diffusion equation with nonlocal source xut − (xux)x = ∫ a 0 u pdx in (0, a) × (0, T ) subject to the homogeneous Dirichlet boundary conditions. The existence of a unique classical nonnegative solution is established and the sufficient conditions for the solution exists globally or blows up in fini...
متن کاملBlow-up for Degenerate and Singular Nonlinear Parabolic Systems with Nonlocal Source
Existence of a unique classical nonnegative solution is established and sufficient conditions for the solution that exists locally or blows up in finite time are obtained for the degenerate and singular parabolic system x1ut − (x1ux)x = ∫ a 0 g(v(x, t))dx, x2vt − (x2vx)x = ∫ a 0 f(u(x, t))dx in (0, a) × (0, T ), where T ≤ ∞, a ≥ 0 are constants, f , g are given functions. Furthermore, under cer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications of the Korean Mathematical Society
سال: 2008
ISSN: 1225-1763
DOI: 10.4134/ckms.2008.23.4.529